RATIO LIMIT THEOREMS FOR MARKOV PROCESSES

BY

S.R. FOGUEL

ABSTRACT

Convergence of $\sum_{n=0}^{N} \mu P^{n}(B)/\sum_{n=0}^{N} \mu P^{n}(A)$ and $\mu P^{n}(B)/\mu P^{n}(A)$ is established for a certain class of Markov operators, P , where μ is a measure and B is a subset of A . The results are proved under certain conditions on P and the set A.

Definitions and notations. Let (X, Σ, m) be a measure space, $m(X) = 1$. Let P be an operator on $L_1(X, \Sigma, m)$ that satisfies:

- (1) If $u \ge 0$ a.e. then $uP \ge 0$ a.e.
- (2) $\int |uP| dm \leq \int |u| dm$.

The operator P is defined on $L_{\infty}(X, \Sigma, m)$ by $\langle u, Pf \rangle = \langle uP, f \rangle$.

By a charge τ we mean a non-negative, *finitely* additive finite measure that is weaker than *m* i.e. if $m(A) = 0$ then $\tau(A) = 0$. The operator *P* is defined on charges by $\tau P(A) = \int P1_A d\tau$. This same equation is used to define P on σ finite measure, weaker than m. Note that if λ is a σ finite measure then λP need not be σ finite. If the charge τ is a measure (is countably additive) and $u = d\tau/dm$ then $uP = d(\tau P)/dm$ and in particular τP is a measure again.

A charge τ is called a *pure charge* provided: *If* μ *is a measure and* $\mu \leq \tau$ *then* $\mu = 0$ *.*

Note that we use only non-negative charges. A bounded finitely additive measure weaker than m , which is not necessarily non-negative, will be called a functional on L_{∞} .

The following theorem of Yosida and Hewitt (see [8], theorem 1.22 and $[1]$, chap. IV, lemma A) will be used often:

THEOREM *Every charge* τ *can be decomposed uniquely into the sum* $\tau_1 + \tau_2$

Received August 3, 1969.

where τ_1 is a measure and τ_2 a pure charge. There exists a sequence of sets, X_n , *such that* $m(X_n) \to 1$ *and* $\tau_2(X_n) = 0$.

Throughout this paper we shall assume that P is ergodic and conservative, i.e.:

$$
If \ m(A) > 0 \ then \ \sum_{n=0}^{\infty} P^n 1_A \equiv \infty.
$$

Details of the various definitions given here can be found in [1].

1. The ratio limit theorem. Throughout this paper we shall assume:

CONDITION I. There exists a set A, with $m(A) > 0$, such that if $m(B) > 0$ *then* $\sum_{n=0}^{N} P^{n}1_{B} \geq \eta 1_{A}$ *where* $N = N(B)$ *and* $0 < \eta = \eta(B)$ *.*

Note that by 1_E we denote the characteristic function of E. Also every set used is a measurable set.

REMARKS ON CONDITION I. (1) If Condition I holds for a set A then it holds for any subset of A.

(2) Let $\varepsilon > 0$ be given and assume Condition I for "big sets" only, namely for sets B such that $m(B) > 1 - \varepsilon$. Then Condition I holds: Let E be a set with $m(E) > 0$. Put $B = \{x: \sum_{k=0}^{K} P^k 1_E \ge 1\}$. If K is large enough, then $m(B) > 1 - \varepsilon$ since P is ergodic and conservative. Thus

$$
\eta 1_A \leq \sum_{n=0}^{N} P^n 1_B \leq \sum_{n=0}^{N} P^n \sum_{k=0}^{K} P^k 1_E \leq K \sum_{j=0}^{N+K} P^j 1_E
$$

or

$$
N(E) = N(B) + K \text{ and } \eta(E) = \frac{\eta(B)}{K}.
$$

(3) Put
$$
A_1 = \{x: \sum_{k=0}^{K} P^k 1_A \ge 1\}
$$
. As $K \to \infty$ $m(A_1) \to 1$. Now
\n
$$
\eta 1_{A_1} \le \eta \sum_{k=0}^{K} P^k 1_A \le \sum_{k=0}^{K} P^k \sum_{n=0}^{N} P^n 1_B \le K \sum_{j=0}^{N+K} P^j 1_B.
$$

This Condition I holds for the set A_1 as well.

LEMMA 1. *If Condition I holds then every invariant pure charge, z, vanishes on A.*

Proof. By the Yosida-Hewitt Theorem there exists a set B with $m(B) > 0$ and $\tau(B) = 0$. Now, since τ is invariant,

$$
0=\left\langle \tau,\sum_{n=0}^N P^n 1_B\right\rangle\geq \eta\tau(A).
$$

If $A = X$ in Condition I, one can conclude:

LEMMA 2. Assume that the only invariant pure charge is zero. There exists a unique invariant charge, λ *, with* $\lambda(X) = 1$. *The invariant charge* λ *is a measure.*

Proof. Let τ be an invariant charge and $\tau = \tau_1 + \tau_2$ its Yosida-Hewitt decomposition. Now $\tau = \tau P = \tau_1 P + \tau_2 P$ and $\tau_1 P$ is a measure while $\tau_2 P$ can be decomposed again. Thus $\tau_1 P \leq \tau_1$ and by [1], (2.10) equality holds, therefore $\tau_2P = \tau_2$ and by assumption $\tau_2 = 0$. Hence every invariant charge is a measure. An invariant charge exists since the set of charges μ with $\mu(X) = 1$ is a weak * com. pact and convex set invariant under P. Uniqueness of the invariant measure follow from $[1]$ chap. VI, theorem A, since P is ergodic and conservative.

Under the condition of the Lemma, one can show that every invariant functional is a multiple of λ . This involves showing that the positive and negative parts of an invariant functional are invariant charges. Hence, by the Hahn Banach Theorem, the range of $I - P$ is dense in the subspace of L_{∞} : $\{f: \langle \lambda, f \rangle = 0\}$. Thus for every $f \in L_{\infty}$

ess. sup
$$
\left| \frac{1}{N+1} \sum_{n=0}^{N} P^n f - \langle \lambda, f \rangle \right|_{N \to \infty} 0
$$

which implies Condition I with $A = X$.

If A is not equal to X and there exists an invariant measure, λ , for P (which is necessarily unique) then if f is supported on A and $\langle \lambda, f \rangle = 0$ then every invariant charge vanishes on f and again ess. $\sup |1/(1+1)| \sum_{n=0}^{N} p^n f|_{N \to \infty} \to 0$. This generalizes Theorem 2 of S. Horowitz L_{∞} -Limit theorems for Markov *processes,* Israel J. of Math. 7 (1969), 60-62, since by Section III if P is a Harris process Condition I is satisfied for some set A.

If A is not equal to X let us follow Harris [2] to localize the process to A. Define the operator T_E on $L_1(X, \Sigma, m)$ by:

$$
u T_E(x) = 1_E(x) \cdot u(x).
$$

Also define the operator $P_A = \sum_{n=0}^{\infty} (PT_A)^n PT_A$ (convergence in the strong sense). Then (A, Σ, m, P_A) is a Markov process and $P_A 1 = P_A 1_A = 1$. See [1], chap. VI, lemma B. The following Lemma is again due to Harris but we will prove it for completeness sake.

LEMMA 3. If $f \ge 0$ is supported on A then

$$
\sum_{n=0}^{N} P^{n} f \leq \sum_{n=0}^{N} P_{A}^{n} f.
$$

Proof. For every $0 \le n \le N P^n f = (PT_A + PT_A)^n f$ is the sum of expressions of the type $(PT_A)^{i_0}(PT_A)^{i_1}\cdots (PT_A)^{i_f}$ where i_k are non-negative integers and $i_0 + i_1 + \cdots + i_r = n$. Also $i_r > 0$ since $T_A f = 0$. Now for every $0 \le k \le N$

$$
P_A^k f \ge [PT_A + \dots + (PT_{A'})^N PT_A]^k f.
$$

Take in this product the first term i_0 times and multiply it, on the right, by $(PT_A)^{i_1}PT_A$ and then again by PT_A $i_2 - 1$ times and so on. This is possible if

$$
k = i_0 + 1 + i_2 - 1 + \dots + 1 + i_r - 1 = i_0 + i_2 + \dots + i_r \leq n \leq N.
$$

Thus every term on the left hand side of the inequality is dominated by an appropriate term on the right hand side.

From Lemma 3 follows that P_A is again conservative and ergodic and satisfies Condition I. Now P_A acts on (A, Σ, m) and thus Lemma 2 applies.

DEFINITION-Let $\tilde{\lambda}$ be the unique invariant charge of P_A such that $\tilde{\lambda}(A)=1$. *Put* $\lambda = \sum_{n=0}^{\infty} \tilde{\lambda}(PT_{A})^{n}$.

The set function λ is a σ finite measure invariant for P (see [1], chap. VI, theorem C). Also if f is supported on A then

$$
\langle \lambda, f \rangle = \tilde{\lambda}, \left\langle \sum_{n=0}^{\infty} (PT_{A'})^{n} f \right\rangle = \langle \tilde{\lambda}, f \rangle.
$$

The fact that Condition I is a sufficient condition for the existence of a σ finite invariant measure is a corollary of a result of Horowitz see [3], theorem 1.

THEOREM 1. Let P satisfy Condition I. If $0 \le f \in L_{\infty}$ is supported on A and μ *is a measure then*

$$
\lim_{N \to \infty} \frac{\sum_{n=1}^{N} \langle \mu P^{n}, f \rangle}{\sum_{n=1}^{N} \mu P^{n}(A)} = \frac{\langle \lambda, f \rangle}{\lambda(A)}.
$$

Proof. It is enough to prove that if N_j is a subsequence of the integers and

$$
\frac{\sum_{n=1}^{N_j} \langle \mu P^n, f \rangle}{\sum_{n=1}^{N_j} \mu P^n(A)}
$$

converges then the limit is equal to $\langle \lambda, f \rangle / \lambda(A)$. Denote a Banach limit by LIM and define the functional τ over L_{∞} by

$$
\langle \tau, g \rangle = \text{LIM} \frac{\sum_{n=1}^{N_j} \langle \mu P^n, T_A g \rangle}{\sum_{n=1}^{N_j} \mu P^n(A)}.
$$

Clearly τ is a charge and from [3], lemma 2 it follows that $\langle \tau, P_A g \rangle \leq \tau, g$) for every $0 \le g \in L_{\infty}$. Now since $P_A 1 = 1$ the charge τ is invariant for P_A and by Lemma 3 $\tau = \tilde{\lambda}$. Finally, our results follows from $T_A f = f$ and $\langle \tilde{\lambda}, f \rangle = \langle \lambda, f \rangle$.

REMARK. In [4] Horowitz proved a similar result. There, Condition I is not assumed but X is a topological space, A a compact set and Pf is continuous whenever f is. The proof presented here is an adaptation of Horowitz's proof.

2. The strong ratio Hmit theorem. Let us assume in this section

CONDITION II. There exists a measure μ such that

$$
\lim \frac{\mu P^{n}(B) - \mu P^{n-1}(B)}{\mu P^{n}(A)} = 0
$$

for every $B \subset A$.

Eventually we wish to prove that $\lim_{\Delta f \to 0} (\langle \mu P^n, f \rangle / \langle \mu P^n, g \rangle) = (\langle \lambda, f \rangle / \langle \lambda, g \rangle)$ and since $\lambda P = \lambda$ Condition II is clearly necessary. Note that $\lim (\mu P^{n-1}(A)/\mu P^{n}(A)) = 1$. Define

$$
M = \{f : f \in L_{\infty} \text{ and } \frac{\langle \mu, P^{n} f \rangle - \langle \mu P^{n-1}, f \rangle}{\mu P^{n}(A)} \to 0\}.
$$

LEMMA 4. *The set M is linear and PM* $\subset M$. Every $f \in L_{\infty}$ which is supported *on A belongs to M. For every integer k and every* $f \in L_{\infty}(PT_A)^k PT_A f \in M$ *.*

Proof. Linearity of M is obvious. Let $f \in M$, then

$$
\lim \frac{\langle \mu P^n, Pf \rangle - \langle \mu P^{n-1}, Pf \rangle}{\mu P^n(A)} = \lim \frac{\langle \mu P^{n+1}, f \rangle - \langle \mu P^n, f \rangle}{\mu P^{n+1}(A)} \lim \frac{\mu P^{n+1}(A)}{\mu P^n(A)} = 0
$$

by Condition II. Now if f is supported on A then for every $\varepsilon > 0$ one can find a step function $\Sigma b_i 1_{B_i}$ where $B_i \subset A$ and $||f - \Sigma_i b_i 1_{B_i}||_{\infty} \leq \varepsilon 1_A$. Thus, by Condition II,

$$
\limsup \left|\frac{\langle \mu P^n, f \rangle - \langle \mu P^{n-1}, f \rangle}{\mu P^n(A)}\right| \leq \varepsilon.
$$

Let us show that $(PT_A)^k PT_A f \in M$ by induction on k. If $k = 0$ then $T_A f \in M$ hence $PT_A f \in M$ too. Now

$$
(PTA)k+1PTAf = P[(PTA)kPTAf - TA(PTA)kPTAf]
$$

the first term, in the brackets, belongs to M by the induction hypothesis and the second term is supported on A and thus belongs to M.

Let us introduce now another condition:

CONDITION III. $|| T_A (PT_A)^N 1 ||_{N \to \infty} \to 0.$

Now for every $f \in L_{\infty}$

$$
\left| P_A f - \sum_{n=0}^{N} (PT_{A'})^n PT_A f \right| = \sum_{n=N+1}^{\infty} (PT_{A'})^n PT_A f \leq ||f||_{\infty} (PT_{A'})^{N+1} 1.
$$

Thus our condition is equivalent to the operator norm convergence of $T_A \sum_{n=0}^{N} (PT_A)^n PT_A$ to $T_A P_A$.

THEOREM 2. Assume Conditions I, II and III. If $0 \leq f \in L_\infty$ is supported *on A then*

$$
\lim \frac{\langle \mu P^n, f \rangle}{\mu P^n(A)} = \frac{\langle \lambda, f \rangle}{\lambda(A)}.
$$

Proof. It is enough to show that if the subsequence $\langle \mu P^{n_i}, f \rangle / \mu P^{n_i}(A)$ converges then the limit is $\langle \lambda, f \rangle / \lambda(A)$. Define the functional

$$
\langle \tau, g \rangle = \text{LIM} \frac{\langle \mu P^{n_i}, T_A g \rangle}{\mu P^{n i}(A)}
$$

and as in Theorem 1, it is enough to show that $\tau P_A = \tau$. Let $g \ge 0$ then

$$
P^{n}T_{A} \sum_{k=0}^{K} (PT_{A'})^{k}PT_{A}g = P^{n}(I - T_{A'}) \sum_{k=0}^{K} (PT_{A'})^{k}PT_{A}g
$$

\n
$$
= P^{n} \sum_{k=0}^{K} (PT_{A'})^{k}PT_{A}g - P^{n-1} \sum_{k=1}^{K+1} (PT_{A'})^{k}PT_{A}g
$$

\n
$$
= P^{n} \sum_{k=0}^{K} (PT_{A'})^{k}PT_{A}g - P^{n} \sum_{k=1}^{K+1} (PT_{A'})^{k}PT_{A}g + (P^{n} - P^{n-1}) \sum_{k=1}^{K+1} (PT_{A'})^{k}PT_{A}g
$$

\n
$$
= P^{n+1}T_{A}g - P^{n}(PT_{A'})^{K+1}PT_{A}g + (P^{n} - P^{n-1}) \sum_{k=1}^{K+1} (PT_{A'})^{k}PT_{A}g
$$

\n
$$
\leq P^{n}T_{A}g + (P^{n} - P^{n-1}) \sum_{k=0}^{K+1} (PT_{A'})^{k}PT_{A}g.
$$

 $K+1$ K Now since $\sum (PT_A)^k PT_A g \in M$ by Lemma 4, $\langle \tau, \sum (PT_A)^k PT_A g \rangle \leq \langle \tau, g \rangle$. $k=0$ $k=0$

Finally, by Condition III, the sum converges uniformly to $P_{\text{A}}g$ hence $\langle \tau, P_{\text{A}}g \rangle$ $\leq \langle \tau, g \rangle$. Since $\langle \tau, P_A \cdot 1 \rangle = \langle \tau, 1 \rangle$ equality holds for every $g \geq 0$ hence $\tau P_A = \tau$.

3. Verification of Conditions I and III. If the set A is an atom, then Conditions I and III are always fulfilled. Let us prove that if P is a Harris process then one can choose a set A so that Conditions I and III hold. For the definition of a Harris process, see [1], chap. V. Now $P^n = Q_n + R_n$ where $Q_n f(x)$ $= \int a_n(x,y)f(y)m(dy)$ and $q_n(x,y)$ is measurable in both variables, and for some $k q_k(x, y)$ is not equal to zero a.e. In order to establish Condition I, let us follow [3]:

For some $\delta > 0$

$$
0 < m^2\{(x, y) : q_k(x, y) \ge \delta\} = \int m(E_x) m(dx)
$$

where

$$
E_x = \{y : q_k(x, y) \ge \delta\}.
$$

Thus for sore $\varepsilon > 0$ $m(A) > 0$ where $A = \{x : m(E_x) \ge \varepsilon\}$. Now if $m(B) \ge 1 - \varepsilon/2$ then, for every $x \in A$, $m(B \cap E_x) \geq \varepsilon/2$ hence

$$
P^{k}1_{B}(x) \geq \int_{B} q_{k}(x, y)m(dy) \geq \int_{B \cap E_{x}} q_{k}(x, y)m(dx) \geq \delta \varepsilon/21_{A}(x)
$$

hence Remark (2) after Condition I applies.

It is more difficult to establish Condition III. Let k be chosen as above and put $\tilde{q}(x, y) = \min [q_k(x, y), 1]$ again \tilde{q} is not zero z.e. Put

$$
\tilde{Q}f(x) = \int \tilde{q}(x, y)f(y)m(dy)
$$

and $\tilde{R} = P^k - \tilde{Q}$. Now $T_A(PT_{A'})^n$ is monotonically decreasing so it is enough to how that $\|T_A(PT_A)^{nk_1}\| \to 0$. To simplify notation we shall assume now that $k = 1$. The main property of \tilde{Q} is (an observation due to Horowitz): If τ *is a charge then* $\tau \tilde{Q}$ *is a measure: If* $E_n \downarrow 0$ *then*

$$
\tau \widetilde{Q}(E_n) \leq \sup_x \int_{E_n} \widetilde{q}(x, y) m(dy) \leq m(E_n) \to 0.
$$

Now put $P^n = \tilde{Q}_n + \tilde{R}^n$ and note that \tilde{Q}_n is a product of terms that at least one of them is \tilde{Q} . Thus \tilde{Q}_n , again, maps a charge into a measure.

LEMMA 5. Let E_n be a sequence of sets decreasing to the null set. For every $k \parallel T_A \tilde{Q}_k 1_{E_n} \parallel_{\infty} \rightarrow {}_{n \to \infty} 0.$

Proof. Assume, to the contrary, that for some $\delta > 0$ the sets

$$
F_n = \{x : T_A \tilde{Q}_k 1_{E_n}(x) \ge \delta\}
$$

are not empty. Let v_n be measures on F_n $v_n(F_n) = 1$. Now if $n > m$ $v_n\tilde{Q}_k(E_m)$ $\geq v_n\tilde{Q}_k(E_n) \geq \delta$ thus if v is a weak * limit of the sequence v_n then $v\tilde{Q}_k(E_m) \geq \delta$ for every *m* hence $v\tilde{Q}_k$ is not a measure.

Another useful property of the decomposition of $Pⁿ$ defined above is:

LEMMA 6. *The sequence* \tilde{R}^n 1 converges monotonically to zero.

Proof. If $\lim \tilde{R}^n = g$ then $g = \tilde{R}^k g \leq P^k g$ for every k thus equality must hold by [1], chapter II, theorem B, and $\tilde{Q}_k g = 0$ but $\tilde{Q}_{n+k} \geq \tilde{Q}_k P^n$ hence $0 = \sum_{n=0}^{\infty} \tilde{Q}_k P^n g = \tilde{Q}_k \sum_{n=0}^{\infty} P^n g$ but $\sum P^n g = \infty$ unless $g = 0$ and \tilde{Q}_k is not the zero operator.

Let us now choose A so that $||T_A\tilde{R}^{n_1}||_{\infty} \rightarrow 0$. Since Condition I is valid whenever one reduces the set A , we do not affect the validity of Condition I by this additional hypothesis.

Now

$$
T_A(PT_{A'})^j(PT_{A'})^n1 = T_A(PT_{A'})^j[T_{B_n}(PT_{A'})^n1 + T_B'(PT_{A'})^n1]
$$

where B_n will be chosen later. Thus

$$
T_A(PT_A)^{j+n}1 \leq \sup T_{B_n}(PT_A)^n1(x) + T_A\widetilde{R}^j1(x) + T_A\widetilde{Q}_j1_{B_n}.
$$

Choose *j* so large that the middle term will be smaller than ε . Choose $B_n = \{x: (PT_A)^n 1(x) < \varepsilon\}$ then the first term is smaller than ε and the last term tends to zero as $n \to \infty$ by Lemma 5.

Let us conclude with some references.

For Harris' processes a stronger result than Theorem 1 was proved in [6].

The strong ration limit theorem (Theorem 2) for Harris' processes was proved in [5] under different assumptions.

For matrices Theorem 2 irplies (by taking $A = \{j, k\}$ and μ a unit measure at $\{i\}$ that:

if
$$
\frac{p_{i,j}^{(n)} - p_{i,j}^{(n-1)}}{p_{i,j}^{(n)} + p_{i,k}^{(n)}} \rightarrow 0
$$
 and $\frac{p_{i,k}^{(n)} - p_{i,k}^{(n-1)}}{p_{i,j}^{(n)} + p_{i,k}^{(n)}} \rightarrow 0$

S. R. FOGUEL Israel J. Math.,

then

$$
\frac{p_{ij}^{(n)}}{p_{i,k}^{(n)}}
$$
 converges.

In (7) Orey proved that
$$
\frac{p_{ij}^{(n)}}{p_{ii}^{(n)}}
$$
 converges provided $\frac{p_{ii}^{(n)} - p_{ii}^{(n-1)}}{p_{ii}^{(n)}} \to 0$.

REFERENCES

1. S. R. Foguel, *The ergodic theory of Markov processes,* Van Nostrand, 1969.

2. T. E. Harris, *The existence of stationary measures for certain Markov processes,* Third Berkeley Symp. Math. Stat. Prob. 2 (1956), 113-124.

3. S. Horowitz, *On* τ *finite invariant measures for Markov processes*, Israel J. Math. 6 (1968), 338-345.

4. S. Horowitz, *Markov processes on a locally compact space,* to be published.

5. N. C. Jain, *The strong ratio limit property for some general Markov processes, Ann.* Math. Statist. 40 (1969), 986-992.

6. N. C. Jain, *Some limit theorems for a general Markov process, Z.* Wahrscheinlishkeitstheorie und Verlw. Gebiete 6 (1966), 206-223.

7. S. Orey, *Strong ratio limit property,* Bull. Amer. Math. Soc. 67 (1961), 571-574.

8. K. Yosida and E. Hewitt, *Finitely additive measures,* Trans. Amer. Math. Soc. 72 (1952), 46-66.

HEBREW UNIVERSITY OF JERUSALEM

392