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PROCESSES

BY
S. R. FOGUEL

ABSTRACT

Convergence of X0- ouP*(B)/ XA- ouP"(4) and uP"(B)/uP™(4) is established
for a certain class of Markov operators, P, where zis a measure and Bis a
subset of A. The results are proved under certain conditions on P and the
set A.

Definitions and notations. Let (X,X,m) be a measure space, m(X)= 1.
Let P be an operator on L, (X, X, m) that satisfies:

(1) Ifuz=0aec. thenuP =0 a.e.
@ [|uP|dm < [|u|dm.

The operator P is defined on L., (X,Z,m) by {u,Pf> = (uP,f>.

By a charge © we mean a non-negative, finifely additive finite measure that is
weaker than mi.e. if m(A4) = 0 then 7(4) = 0. The operator P is defined on charges
by tP(4) = [ P1,dr. This same equation is used to define P on o finite measure,
weaker than m. Note that if A is a ¢ finite measure then AP need not be ¢ finite.
If the charge 7 is a measure (is countably additive) and u = dt/dm then
uP = d(tP)/dm and in particular 7P is a measure again.

A charge 7 is called a pure charge provided:

If uis a measure and p <7 then u=0.
Note that we use only non-negative charges. A bounded finitely additive measure

weaker than m, which is not necessarily non-negative, will be called a functional
on L.

The following theorem of Yosida and Hewitt (see [8], theorem 1.22 and [1],
chap. 1V, lemma A) will be used often:

TueoreM Every charge t can be decomposed uniquely into the sum 1, + 1,
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where T, is a measure and 1, a pure charge. There exists a sequence of sets, X,
such that m(X,) - 1 and 7,(X,) = 0.

Throughout this paper we shall assume that P is ergodic and conservative, i.e.:
=4}
If m(A)>0 then X P'1, = oo,
n=0

Details of the various definitions given here can be found in [1].
1. The ratio limit theorem. Throughout this paper we shall assume:

CoNDITION 1. There exists a set A, with m(A) >0, such that if m(B)>0
then XY_, P"1, = nl, where N = N(B) and 0 < n = n(B).

Note that by 1, we denote the characteristic function of E. Also every set used
is a measurable set.

REMARKS oN ConpitioN 1. (1) If Condition I holds for a set A then it holds
for any subset of A.

(2) Let e > 0 be given and assume Condition I for “‘big sets’* only, namely fo,
sets B such that m(B) > 1 —¢. Then Condition I holds: Let E be a set with
m(E) > 0. Put B = {x: TX_,P*1; = 1}. If K is large enough, then m(B)> 1 —¢
since P is ergodic and conservative. Thus

N N K N+K .
n, < TP, TP TP, £ KX P,
n=0 n=0 k=0 ji=0
or
N(E)= N(B)+ K and #(E =1LI](3)_'

(3) Put 4, = {x: TX_oP¥,>1}. As K> oo m(4,) > 1. Now

K K N N+K
My, s n EPklAé X P P K X Pl
k=0 =

k=0 = n=0 j=0

This Condition I holds for the set A; as well.

LemMa 1. If Condition I holds then every invariant pure charge, 1, vanishes
on A.

Proof. By the Yosida-Hewitt Theorem there exists a set B with m(B) > 0 and
7(B) = 0. Now, since 7 is invariant,

0= <‘c, ) go P"13> = ne(A).
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If A = X in Condition I, one can conclude:

LemMMA 2. Assume that the only invariant pure charge is zero. There exists a

unique invariant charge, A, with (X) = 1. The invariant charge 1 is a measure.

Proof. Let t be an invariant charge and 7 =1, + 1, its Yosida-Hewitt de-
composition. Now 7 =1P = 1,P + 7,P and 7,P is a measure while 7,P can be
decomposed again. Thus 7,P < 7, and by [1], (2.10) equality holds, therefore
7,P =1, and by assumption 7, = 0. Hence every invariant charge is a measure.
An invariant charge exists since the set of charges y with u(X) = 1is a weak * com.
pact and convex set invariant under P. Uniqueness of the invariant measure follow
from [1] chap. VI, theorem A, since P is ergodic and conservative.

Under the condition of the Lemma, one can show that every invariant functional
is a multiple of 4. This involves showing that the positive and negative parts of an
invariant functional are invariant charges. Hence, by the Hahn Banach Theorem,
the range of I — P is dense in the subspace of Ly {f:<{4,f> = 0}. Thus for every
feLly

N
ZPf-LAf>] -0
n=0

1
ess. Sup | g
which implies Condition I with 4 = X.

If A is not equal to X and there exists an invariant measure, 4, for P (which
is necessarily unique) then if f is supported on A and {4,f)> = O then every in-
variant charge vanishes on f and again ess. sup]l(/l +1 Zl,:':o p"f[,‘HOO -0,
This generalizes Theorem 2 of S. Horowitz L.-Limit theorems for Markov
processes, Israel J. of Math. 7 (1969), 60-62, since by Section IIL if P is a Harris

process Condition I is satisfied for some set A.

If A is not equal to X let us follow Harris [2] to localize the process to A. Define
the operator Ty on L(X,Z, m) by:

uTg(x) = 15(x) - u(x).
Also define the operator P, = X,20(PT,.)"PT, (convergence in the strong
sense). Then (4,%,m,P,) is a Markov process and P,1=P,1,=1. See [1],

chap. VI, lemma B. The following Lemma is again due to Harris but we will prove
it for completeness sake.

LemMA 3. Iff=0is supported on A then
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N N
X Pf< X PLf.
n=0 n=0
Proof. For every 0<n < NP'f=(PT,+ PT,.)"f is the sum of expressions
of the type (PT,)°(PT,)* - (PT,)“f where i, are non-negative integers and
ip+1i, +++i,=n Also i,>0since T,.f =0. Now for every 0k <N
Pif 2 [PTy+ - + (PT)"PT]Y.

Take in this product the first term i, times and multiply it, on the right, by
(PT,.)'PT, and then again by PT, i, — 1 times and so on. This is possible if
k=lo+1+12_1+"'+1+lr—1=lo+lz+'+lr§n§_N.

Thus every term on the left hand side of the inequality is dominated by an appro-
priate term on the right hand side.

From Lemma 3 follows that P, is again conservative and ergodic and satisfies
Condition I. Now P, acts on (4,%,m) and thus Lemma 2 applies.

DEerINITION. Let 1 be the unique invariant charge of P4 such that J(A)=1.
Put A= X7 J(PT )"

The set function A is a ¢ finite measure invariant for P (see [1]. chap. VI,
theorem C). Also if f is supported on A4 then

LY =4C ZPTLSf >=LLf>.
Sy =L Z (PT p=CLf>
The fact that Condition I is a sufficient condition for the existence of a ¢ finite

invariant measure is a corollary of a result of Horowitz see [3], theorem 1.

TueoreM 1. Let P satisfy Condition I. If 0 < f € L, is supported on A and p
is a measure then

N

i T g
N MA)
3 uP"(A)

B
1]
-

Proof. Itisenough to prove that if N, is a subsequence of the integers and
Ny
;1 uPf>

Nj
X uP(A)

n=1
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converges then the limit is equal to <4,f)/A(4). Denote a Banach limit by LIM
and define the functional T over L, by

Nj
2 (uP, T
{r,g> =LIM "=L

3

Y. uP*(A)

Clearly 7 is a charge and from [3], lemma 2 it follows that {7,P,g> <,g)
for every 0 < ge L. Now since P 1 =1 the charge 7 is invariant for P, and
by Lemma 3 7 = . Finally, our results follows from T, f = f and <{1,f) = {4,f).

Remark. In [4] Horowitz proved a similar result. There, Condition I is not
assumed but X is a topological space, 4 a compact set and Pf is continuous
whenever f is. The proof presented here is an adaptation of Horowitz’s proof.

2. The strong ratio limit theorem. Let us assume in this section
ConDITION II. There exists a measure p such that

. uP(B) ~ pP"(B) _
lim P(A) =0

for every B < A.

Eventually we wish to prove that lim ((uP”, f)/<uP", g3) = ({A,f>[{4,g>) and
since AP = A Condition II is clearly necessary. Note thatlim (uP"~(4)/uP*(4)) = 1.
Define

Ny {u, PfY = uP"= L f)
M={f:feLyand (A - 0}.

LEMMA 4. The set M is linear and PM < M. Every f € L, which is supported
on A belongs to M. For every integer k and every f € Loo(PTA,)"PTAf eM.

Proof. Linearity of M is obvious. Let f € M, then

: <,LLP",Pf>—<ﬂP"-1,Pf>
lim 2P(d)

SuP™*Lf) — SuPnf) L. Pt H(A)

Pn+1(A) lim /lP"(A) =0

= lim

by Condition II. Now if f is supported on A then for every & > 0 one can find
a step function b1y, where B, 4 and |f— Z;b1p || < €1, Thus, by Con-

dition II,

[P f> — (uPm L f) ) <

lim sup ZP(A)
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Let us show that (PT,.)*PT,f € M by induction on k. If k =0 then T,feM
hence PT,f € M too. Now

® TA')k+1P T,f=P[(P TA’)kP T f—T(P TA‘)kP T.f ]
the first term, in the brackets, belongs to M by the induction hypothesis and the
second term is supported on A and thus belongs to M.
Let us introduce now another coudition:

ConpitioN IIIL || T{(PT4)"1 |[yoe— 0.

Now for every fe Ly

Na w
Puf~ L(PTOPLS | = % (PTPTS S|f|olPTa)"'1.

n=0
Thus our condition is equivalent to the operator ncrm ccnvergence of
T XN o(PT,)'PT, to T,P,.
THEOREM 2. Assume Conditions I, II and III. If 0<feL is supported
on A then

Py LS
m ) = 2

Proof. Itisenough to show thatif the subsequence {uP",f>/uP"(A)converges
then the limit is {A,f>/A(A). Define the functional

<Ian', TAg>
7,8y =LIM ——- 222
v, 8> i)

and as in Theorem 1, it is enough to show that tP, = 7. Let g = 0 then

K K
PTy X (PTA’)kPTAg =P(I-T4) X (PTA’)kPTAg
k=0 k=0

K+1

K
=P" X (PT,)*PT,g — P~ X (PT,)'PT,g
k=0 k=1

K+1 K+1

K
=P" ZO(PTA,)"PTAg —P" I (PT,)'PT,g+(P"~ P1) S (PT,)'PT,g
k= k=1 k=1

K+1

=P""'T,g — P"(PT, )" 'PT g +(P" - P""') ¥ (PT,)'PT,g
k=1

K+1

< PT84+ (PP —P~') X (PT.)'PT,g.
k=0
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K+1 K
Now since X (PT,)*PT,geM by Lemma 4, {(r, X (PT,)PT,g> <{1,8).
k=0 k=0

Finally, by Condition 1lI, the sum converges uniformly to P,g hence (1,P,g>
< {1,g). Since {1,P41) = {1,1) equality holds for every g =0 hence 1P, = 1.
3. Verification of Conditions I and III. If the set 4 is an atom, then Con-

ditions I and [T are always fulfilled. Let us prove that if P is a Harris process
then one can choose a set 4 so that Conditions I and HI hold. For the definition

of a Harris process, see [1], chap. V. Now P"= Q,+ R, where Q,f(x)
= [ q,(x,)f(y)m(dy) and q.(x,y) is measurable in both variables, and for
some k ¢,(x,y) is not equal to zero a.e. In order to establish Condition I, let us
follow [3]:
For some 6 >0
0 < m*{(x,y) :q(x,y) 2 8} = f m(E,ym(dx)
where
E.={y:adxy) 2z}
Thus for sore & > 0 m(4) > 0 where 4 = {x :m(E,) 2 ¢}. Now if m(B)=1—¢/2
then, for every xe A, m(B n E,) = &/2 hence
PLEZ [ atenm@nz f 4, Y)m(dx) 2 66[21,(x)

BnE,

hence Remark (2) after Condition I applies.

It is more difficult to establish Condition IIL. Let k be chosen as above and put
4(x,y) = min[g,(x, y),1] again § is not zero z.e. Put

016 = [ 2, GIme)
and R =P* — 0. Now T,(PT,.)"1 is monotonically decreasing so it is enough to
how that ” T(PT,)™ ” — 0. To simplify notation we shall assume now that
k = 1. The main property of J is (an observation due to Horowitz): If 1 is a charge
then 10 is a measure: If E, |0 then
Q) S sup [ q0x,)m(dy) < m(E)~0.
x E,

Now put P*={, + R" and note that §, is a product of terms that at least one
of them is @. Thus §,, again, maps a charge into a measure.

LemMA 5. Let E, be a sequence of sets decreasing to the null set. For every
k|| TuQile, [ 0= ne-
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Proof. Assume, to the contrary, that for some 6 > O the sets

F,={x: TAQ~k1E,,(x) = 6}

are not empty. Let v, be measures on F, v,(F,) =1 Now if n>m v,,Qk(E,,,)
> v,0(E,) = 6 thus if v is a weak * limit of the sequence v, then vJ(E,,) = & for

every m hence v{, is not a measure.
Another useful property of the decomposition of P" defined above is:

LEMMA 6. The sequence R"1 converges monotonically to zero.

Proof. If limR"l = g then g= R*g < P*g for every k thus equality must
hold by [1], chapter 1I, theorem B, and 0,g=0 but §,,, = 0,P" hence
0=3X2,0Pg=0.2oP'g but TP"g= o unless g =0 and §, is not the
Zero operator.

Let us now choose A so that || T,&"1 |, — 0. Since Condition I is valid whenever
one reduces the set A, we do not affect the validity of Condition I by this additional
hypothesis.

Now

Ty(PT,)(PTy )"t = T(PT ) [T, (PT,)'1 + Ty (P, )'1]

where B, will be chosen later. Thus

T(PT,)’ "™ < sup Ty (PT,)"1(x) + TuR1(x) + T,0,15. .

Choose j so large that the middle term will be smaller than e. Choose
B, = {x:(PT¢)"I(x) < &} then the first term is smaller than ¢ and the last term
tends to zero as n — co by Lemma 3.

Let us conclude with some references.

For Harris’ processes a stronger result than Theorem 1 was proved in [6].

The strong ration limit theorem (Theorem 2) for Harris’ processes was proved
in [5] under different assumptions.

For matrices Theorem 2 irplies (by taking 4 = {j,k} and p a unit measure
at {i} that:
(m __ pln—1) ) _ 1)
lf pl,] pl,] - 0 and pz,k p:,k - 0
piy + P i)+ iy
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(n)

then Py converges.
(n)
Dik
p.('.') pg'.‘) —_ p..(“—l)
In (7) Orey proved that =2 converges provided =L ——*—— .0,
(n) )
bi; Pii
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