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ABSTRACT 

Convergence of ~N= olapn(B)/~N= opP~(A) and ltpn(B)/ltPn(A) is established 
for a certain class of Markov operators, P, where/a is a measure and B is a 
subset of A. The results are proved under certain conditions on P and the 
set A. 

Definitions and notations. Let (X,Z,m)  be a measure space, re(X) = 1. 

Let P be an operator on L1 (X, E, m) that satisfies: 

(1) I f u  > 0 a.e. then uP >= 0 a.e. 

(2) YluPIdm__< fluldm. 
The operator P is defined on L~o (X, 2, m) by <u, P f )  = (uP, f>.  

By a charge z we mean a non-negative, f ini tely  additive finite measure that is 

weaker than m i.e. if re(A) = 0 then z(A) = 0. The operator P is defined on charges 

by TP(A) = f P l a d z .  This same equation is used to define P on a finite measure, 

weaker than m. Note that if 2 is a a finite measure then 2P need not be a finite. 

I f  the charge • is a measure (is countably additive) and u = d~/dm then 

uP = d(zP)/dm and in particular zP is a measure again. 

A charge -c is called a pure charge provided: 

I f  # is a measure and # < z then ~t = O. 

Note that we use only non-negative charges. A bounded finitely additive measure 

weaker than m, which is not necessarily non-negative, will be called a functional 

on L~. 

The following theorem of Yosida and Hewitt (see [8], theorem 1.22 and [1], 

chap. IV, lemma A) will be used often: 

THEOREM Every charge z can be decomposed uniquely into the sum z~ + z 2 
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where z 1 is a measure and z2 a pure charge. There exists a sequence of sets, X , ,  

such that m(X , )  -~ 1 and z2(X,) = 0. 

Throughout this paper  we shall assume that P is ergodic and conservative, i.e. : 

oo 

I f  m ( A ) > O  then ]~P"I  A -  ~ ,  
n = 0  

Details of  the various definitions given here can be found in [1]. 

1. The ratio limit theorem. Throughout  this paper  we shall assume: 

CONDmON I. There exists a set A,  with re (A)> O, such that i f  re(B)> 0 

then ~0=o vN P"IB = > r/1a where N = N(B)  and 0 < r 1 = ~I(B). 

Note that by 1E we denote the characteristic function of E. Also every set used 

is a measurable set. 

REMARKS ON CONDmON I. (1) I f  Condition I holds for a set A then it holds 

for any subset of  A. 

(2) Let e > 0 be given and assume Condit ion I for "big  sets" only, namely fo r 

sets B such that re(B) > 1 - e. Then Condit ion I holds: Let E be a set with 

-~ ~_~k=O P 15 ~ 1}. I f  K is large enough, then re(B) > 1 - e m(E)>O.  P u t B  {x: K k 

since P is ergodic and conservative. Thus 

N N K N + K  

r/1a < ]~ pnla < ]~ pn E pkl~ < K ~ PJl e 
n = 0  n = 0  k = 0  j = 0  

o r  ,7(B) 
N(E) = N(B) + K and t/(E) - K 

(3) PutA1 {x: K k = ~,k=oP 1A => 1}.As K ~  c~ m ( A a ) ~  1. Now 

K K N N + K  

rlla~ < tl ]E pk l  a < ~ pk E P"IB < K ~ PJl  B. 
k = O  k = 0  n = 0  j = 0  

This Condition I holds for the set A x as well. 

LEMMA 1. I f  Condition I holds then every invariant pure charge, z, vanishes 

on A. 

Proof. By the Yosida-Hewitt  Theorem there exists a set B with m(B) > 0 and 

z(B) = 0. Now, since z is invariant,  

N 

n = 0  
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If A = X in Condition I, one can conclude: 

LEMMA 2. Assume that the only invariant pure charge is zero. There exists a 

unique invariant charge, 2, with 2(X) = 1. The invariant charge 2 is a measure. 

Proof. Let z be an invariant charge and z = z 1 + ~2 its Yosida-Hewitt de- 

composition. Now "c = zP = ziP + z2P and z:P is a measure while z2P can be 

decomposed again. Thus z:P < z x and by [1], (2.10) equality holds, therefore 

z2P = z2 and by assumption z2 = 0. Hence every invariant charge is a measure. 

An invariant charge exists since the set of charges # with p(X) = 1 is a weak * com. 

pact and convex set invariant under P. Uniqueness of the invariant measure follow 

from [1] chap. VI, theorem A, since P is ergodic and conservative. 

Under the condition of the Lemma, one can show that every invariant functional 

is a multiple of 2. This involves showing that the positive and negative parts of an 

invariant functional are invariant charges. Hence, by the Hahn Banach Theorem, 

the range of I - P is dense in the subspace of L~o: { f :  <)~,f> --- 0}. Thus for every 

f eL~o 
N 

1 Z P"f-  <2,f> ~ 0 ess. sup N + I  ,=o 

which implies Condition I with A = X. 

If  A is not equal to X and there exists an invariant measure, 2, for P (which 

is necessarily unique) then i f f  is supported on A and (2,f> = 0 then every in- 

~],=o P"f[~v-.oo "-+ O. variant charge vanishes on f and again ess. sup l 1(/1 + 1) u 

This generalizes Theorem 2 of S. Horowitz Loo-Limit theorems for Markov 

processes, Israel J. of  Math. 7 (1969), 60-62, since by Section III if P is a Harris 

process Condition I is satisfied for some set A. 

If  A is not equal to X let us follow Harris [2] to localize the process to A. Define 

the operator TE on LI (X ,Z ,m)  by: 

uT~(x)=l~(x)" u(x). 

Also define the operator Pa = ~,~o(PTa,)"PTa (convergence in the strong 

sense). Then (A,Z,m,PA) is a Markov process and Pa l  = PalA = 1. See [1], 

chap. VI, lemma B. The following Lemma is again due to Harris but we will prove 

it for completeness sake. 

LEMMA 3. I f  f >  0 is supported on A then 
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3/ N 

ZP' f<= E P ~ f .  
n = 0  n = 0  

Proof. For  every 0 < n < N W f  = (PT a + PTa,) ' f  is the sum of expressions 

of  the type (PTa)i°(PTA,) il ...(PTA)I'f where ik are non-negative integers and 

io + il + "'" + ir = n. Also ir > 0 since TA,f = 0. Now for every 0 _< k < N 

P J f  > [PTA + "" + (PTA,)NPTa]kf. 

Take in this product the first term i 0 times and multiply it, on the right, by 

(PTa,)~'PTA and then again by PT A i 2 - 1 times and so on. This is possible if  

k = i o +  l + i 2 - 1 + . . . +  l + i , - l = i o + i a + . . . + i , ~ _ n ~ _ N .  

Thus every term on the left hand side of  the inequality is dominated by an appro- 

priate term on the right hand side. 

From Lemma 3 follows that Pa is again conservative and ergodic and satisfies 

Condition I. Now PA acts on (A,Z, m) and thus Lemma 2 applies. 

DEFINITION-Let ~, be the unique invariant charge of PA such that ~(A)= 1. 
Put 2 = Z~=o),(PTa,) ". 

The set function 2 is a a finite measure invariant for P (see [1], chap. VI, 

theorem C). Also if f is supported on A then 

oo 

= J , (  m (PTA,)"f)= 
- - n = 0  

The fact that Condition I is a sufficient condition for the existence of a a finite 

invariant measure is a corollary of  a result of  Horowitz see [3], theorem 1. 

THEOREM 1. Let P satisfy Condition I. I f  0 <= f ~ Loo is supported on A and 12 

is a measure then 

N 

Z ( p P ' , f )  
l i m '  = 1 

N 

Z #P'(A) 
n = l  

( ~ , f )  
~t(A) " 

Proof. It  is enough to prove that if  Nj  is a subsequence of the integers and 

NJ 

E (pP",f> 
n = l  

Nj 

Z #P"(A) 
n = l  
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converges then the limit is equal to <2,f>/2(A). Denote a Banach limit by LIM 

and define the functional z over Loo by 

Nj 

Z <~P", TAg> 
<z, g> = LIM "= 1 

N~ 
Z I~Pn(A) 

n = l  

Clearly z is a charge and from [3], lemma 2 it follows that <z,Pag) =< ~,g> 

for every 0 __< g ~ Leo. Now since Pa l  = 1 the charge z is invariant for Pa and 

by Lemma 3 • = ~. Finally, our results follows from TAf = f  and <J[,f> = <2,f>. 

REMARK. In [4] Horowitz proved a similar result. There, Condition I is not 

assumed but X is a topological space, A a compact set and P f  is continuous 

whenever f is. The proof  presented here is an adaptation of Horowitz's proof. 

2. The strong ratio Hmit theorem. Let us assume in this section 

CONDITION II. There exists a measure p such that 

lim pP"(B) - I~P'- I(B) = 0 
#P"(A) 

for every B c A. 

Eventually we wish to prove that lim((#P',f>/<#P', g>)= (<2,f>/<2,g>) and 

since 2P = 2 Condition II is clearly necessary. Note that lim (I~P'- I(A)/#P'(A)) = 1. 

Define 

M = { f : f~Loo and <~'P"f> - <#p , -1 , f>  ~.0}. 
#P"(A) 

LEMMA 4. The set M is linear and PM c M. Every f ~ Loo which is supported 

on A belongs to M. For every integer k and every f E Loo(PTA,)kPTaf e M. 

Proof. Linearity of  M is obvious. Let f ~ M, then 

lim <#P"' Pf> - <#P'-i p f> 
pP"(A) 

= lim <#p ,+ l , f>  _ (#p, , f> lim #P"+x(A)- - 0 
12P"+ I(A) I~P'(A) 

by Condition II. Now if f is supported on A then for every e > 0 one can find 

a step function ZbilB, where B ~ c A  and Ill-ZibilB,[J °o<ela" Thus, by Con- 

dition II, 

lira sup ] <]~e"'f> - <#e"-  1,f> _-< e. 
I 
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Let us show that (PTa,)kpTaf~M by induction on k. I f  k = 0  then T a f e M  

hence PTaf ~ M too. Now 

(PTA,) k+ 1PTAf = P[(PTA,)kPTaf - TA(PTA,)kPTaf] 

the first term, in the brackets, belongs to M by the induction hypothesis and the 

second term is supported on A and thus belongs to M. 

Let us introduce now another coqdition: 

CONDITION III .  II Ta(PTa')N1 [IN-*Oo ~ O. 

Now for every f ~ Loo 

N~i 
P a f -  ~-, (PTA,)"PTAf = • (PTa')"PTaf <= []fl[oo(PTa,)N+~l. 

n = 0  n = N + I  

Thus our condition is equivaknt  to the opcrator ncrm ccnvergcncc of 

TA Z~=o(PTA,yPTA to r~P~. 

THEOREM 2. 

on A then 

Assume Conditions I, II and III. I f  O<=f ~L~o is supported 

lim <#pn,f>_ <2,f> 
#P"(A) 2(A) " 

Proof. I t  is enough to show that if  the subsequence (pl~',f)/#P"'(A) converges 

then the limit is (2J)/2(A). Define the functional 

(% g )  = LIM Q~P"" TAg) 
pP"'(A) 

and as in Theorem 1, it is enough to show that zPa = z. Let g > 0 then 

K K 

P"TA Z (PTa,)kpTag = P"(I  - Ta,) ~] (PTa,)kpTAg 
k = 0  k = 0  

K K + I  

= p. ~ (pTa,)kpTag _ p.-a E (PTA,)kpTag 
k = 0  k = l  

K K + I  

= p, ~,(pra,)kpTAg _ p,  ~. (pTa.)~Prag + (p, _ pn-X) 
k = 0  k = l  

= p . + I T a g  _ p. (pTa,)K+iPTAg + (p.  _ p . - 1 )  

<= P"TAg + (P" - p . - 1 )  
K + I  

~. (PTA,)kpTAg. 
k = 0  

K + I  

E (Pr.,)~PTAg 
k = l  

K + I  

~. (PTa.)kpTAg 
k = l  
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K + I  K 

Now since ~,(PTA,)kpTAg~M by Lemma 4, (z, ~(PTA,)kpT.4g)<=(z,g). 
k=O k = O  

Finally, by Condition llI ,  the sum converges uniformly to Pag hence (z, PAg ) 

__< (z ,g ) .  Since (z,PA1) = (z, 1) equality holds for every g > 0 hence zP a = z. 

3. Verification of Conditions I and III. I f  the set A is an atom, then Con- 

ditions I and lII are always fulfilled. Let us prove that if P is a Harris process 
then one can choose a set A so that Conditions I and llI  hold. For the definition 

of a Harris process, see [1], chap. V. Now p n =  Qn+R~ where Q,f(x) 

= fqo(x,y)J(y)m(dy) and q,,(x,y) is measurable in both variables, and for 

some k qg(x,y) is not equal to zero a.e. In order to establish Condition I, let us 

follow [3] : 

For  some t5 > 0 

< m2{(x,y):qk(x,y) > J} = f  m(Ex)m(dx) 0 

where 

E x = {y : qk(X, y) >-- 6}. 

Thus for sore 8 > 0 m(A) > 0 where A = {x : m(Ex) > e}. Now if re(B) > 1 - el2 

then, for every x ~ A, m(B N Ex) >= el2 hence 

pklB(x) >= f~ qk(x'y)m(dy) > fn qk(x,y)m(dx) >= tSe/E1A(X) 
nE~e 

hence Remark (2) after Condition I applies. 

It is more difficult to establish Condition III. Let k be chosen as above and put 
~(x,y) = min [qg(x,y), 1] again ~ is not zero z.e. Put 

= i q ( x ,  

g *  

y)f(y)m(dy) 

and /~  = pk _ O. Now TA(PTA,)"I is monotonically decreasing so it is enough to 

how that II TA(PT ') II- 0. To simplify notation we shall assume now that 

k = 1. The main property of Q is (an observation due to Horowitz): I f  ~ is a charge 

then tO_, is a measure: I f  E.~, O then 

zQ(E,) <= sup f ~(x,y)m(dy) <= m(E,)-+O. 
X J E n  

Now put pn = ~ + K, and note that Q, is a product of terms that at least one 

of them is 2 .  Thus Q,, again, maps a charge into a measure. 

LEM~A 5. Let E, be a sequence of sets decreasing to the null set. For every 

k II 
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Proof. Assume, to the contrary, that for some 6 > 0 the sets 
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Fn={x:TaOklE, , (X)~3} 

are not empty. Let v. be measures on Fn vn(Fn)= 1. Now if n > m vnO, k(E=) 

> V,Qk(E,) > 6 thus if v is a weak * limit of  the sequence Vn then VO, k(E,,) > 6 for 

every m hence VOk is not a measure. 
Another  useful property of the decomposition of Pn defined above is: 

LEMMA 6. The sequence _R"I converges monotonically to zero. 

Proof. I f  lim/~"l = g then g =  _~kg< pkg for every k thus equality must 

hold by [1], chapter II ,  theorem B, and Q k g  = 0 but Q.+k > O k  P n  hence 
~ oo ~-, p n  7 ,  ~ oo p n  0 = L,=0tdk g = UkZ~n=O g but ZP~g = oo unless g = 0 and Qk is not the 

zero operator. 

Let us now choose A so that 11TaR"I n co ~ 0. Since Condition I is valid whenever 

one reduces the set A, we do not affect the validity of  Condition I by this additional 

hypothesis. 

N o w  

TA(PTa,)J(PTa,)"I = TA(PTa,)J[Ta.(PTA,)nl + T.'(PTA,)nl ] 

where B, will be chosen later. Thus 

TA(PTa,)J+"I <= sup TB,(PTa,)nl(x) + TA_RJl(x) + TAOjlB," . 

Choose j so large that the middle term will be smaller than e. Choose 

B, = {x:(PTA,)"I(x) < e) then the first term is smaller than e and the last term 

tends to zero as n ~ ~ by Lemma 5. 

Let us conclude with some references. 

For Harr is '  processes a stronger result than Theorem 1 was proved in [6]. 

The strong ration limit theorem (Theorem 2) for Harr is '  processes was proved 

in [5] under different assumptions. 

For matrices Theorem 2 irplies (by taking A = {j ,k)  and V a unit measure 

at {i} that:  

.(~! p(~-l) ..(n) . ( , -1)  
- -  Fi ,k  - -  F i ,k  if  ~ ' J  - ~  0 and • 0 

p (n) -4-- ,~(n) ~(n) 
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p(•) tJ 
- -  converges. 
p(n) 

i.k 

P'~") "~") - Pi~"- 1) In  (7) Orey proved that ' J  converges provided ~" 

~i P i i  

~0. 
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